Fractional step methods applied to a chemotaxis model.

نویسندگان

  • R Tyson
  • L G Stern
  • R J LeVeque
چکیده

A fractional step numerical method is developed for the nonlinear partial differential equations arising in chemotaxis models, which include density-dependent diffusion terms for chemotaxis, as well as reaction and Fickian diffusion terms. We take the novel approach of viewing the chemotaxis term as an advection term which is possible in the context of fractional steps. This method is applied to pattern formation problems in bacterial growth and shown to give good results. High-resolution methods capable of capturing steep gradients (from CLAWPACK) are used for the advection step, while the A-stable and L-stable TR-BDF2 method is used for the diffusion step. A numerical instability that is seen with other diffusion methods is analyzed and eliminated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

Multi-step conformable fractional differential transform method for solving and stability of the conformable fractional differential systems

‎In this article‎, ‎the multi-step conformable fractional differential transform method (MSCDTM) is applied to give approximate solutions of the conformable fractional-order differential systems‎. ‎Moreover‎, ‎we check the stability of conformable fractional-order L\"{u} system with the MSCDTM to demonstrate the efficiency and effectiveness of the proposed procedure.

متن کامل

European option pricing of fractional Black-Scholes model with new Lagrange multipliers

In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to  btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...

متن کامل

Multi-step conformable fractional differential transform method for solving and stability of the conformable fractional differential systems

In this article‎, ‎the multi-step conformable fractional differential transform method (MSCDTM) is applied to give approximate solutions of the conformable fractional-order differential systems‎. ‎Moreover‎, ‎we check the stability of conformable fractional-order L"{u} system with the MSCDTM to demonstrate the efficiency and effectiveness of the proposed procedure.

متن کامل

Fractional Thermoelasticity Model of a 2D Problem of Mode-I Crack in a Fibre-Reinforced Thermal Environment

A model of fractional-order of thermoelasticity is applied to study a 2D problem of mode-I crack in a fibre-reinforced thermal environment. The crack is under prescribed distributions of heat and pressure. The normal mode analysis is applied to deduce exact formulae for displacements, stresses, and temperature. Variations of field quantities with the axial direction are illustrated graphically....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2000